

Underhood Thermal Management in Hybrid Electric Vehicles

David P. Weber October 6, 1999

Argonne National Laboratory
Transportation Technology R&D Center

Three Steps to Understanding Underhood Thermal Management in HEVs

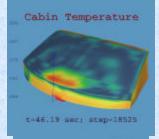
- Applying high-performance computing to automotive design and manufacturing
 - Cooperative Research and Development Agreement (CRADA) between the U.S. Council for Automotive Research (USCAR) and U.S. Department of Energy (DOE) laboratories
- Analyzing automotive underhood thermal management with 3-D coupled thermal-hydrodynamic computer models
 - CRADA among USCAR/ADAPCO/Argonne/ORNL
- HEV underhood thermal management pilot project
 - Argonne/ADAPCO joint project

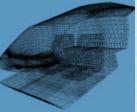
Applying Supercomputing to Thermal Management in Vehicles

In 1993, DOE laboratories and USCAR initiated a CRADA to develop advanced engineering analysis methods/codes.

- USCAR established the Supercomputing Automotive Applications Partnership (SCAAP) to oversee the CRADA.
- The initial CRADA included an emphasis on computational fluid dynamics (CFD), focused on the CHAD code, originally developed at Los Alamos National Laboratory.
- Argonne and ORNL developed thermal-analysis models for CHAD, focused on HVAC systems.
- USCAR selected ADAPCO for possible commercialization of CHAD and/or its models and methodology.

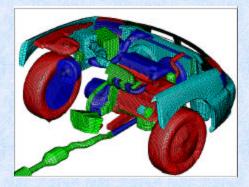
Argonne National Laboratory
Transportation Technology R&D Center


Underhood Thermal Management in HEVs


- The underhood thermal management CRADA began in 1998 to extend CHAD to new class of problems, with additional emphasis on numerical performance, with approval of USCAR and industry/government representatives from the Partnership for Next Generation Vehicles (PNGV)
- The pilot project on use of CFD for HEV underhood thermal management was initiated between Argonne and ADAPCO in August

Using High-Performance Computing in Automotive Design and Manufacturing

- CRADA with USCAR's SCAAP
- Multiyear joint effort between USCAR and DOE labs (Argonne, LANL, LLNL, ORNL, SNL)
- Technical Focus
 - Next-generation CFD code -CHAD
 - Advanced models for crash simulation codes, such as DYNA-3D
- Argonne Technical Focus
 - Thermal and hydrodynamic models in CHAD for HVAC analysis
 - Advanced models for composite materials in DYNA-3D



Argonne National Laboratory Transportation Technology R&D Center

Automotive Underhood Thermal Management Analysis with 3-D Coupled Thermal-Hydrodynamic Computer Models

- CRADA with ADAPCO, General Motors, Ford, DaimlerChrysler, and ORNL
 - Fan, radiator and heat transport system models
 - Improved numerics in CHAD
 - Radiation heat transfer model
 - Verification and validation
 - Virtual reality for examination of results

Roles of Partners

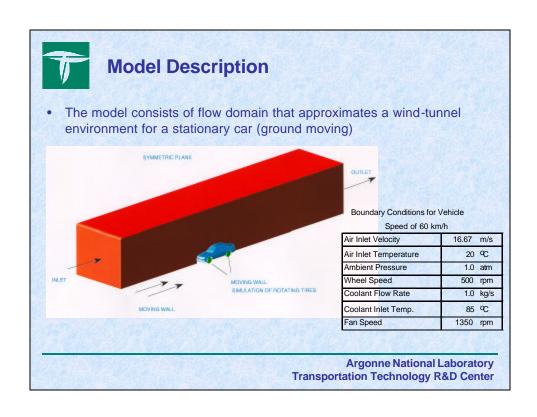
- Argonne National Laboratory
 - Develop and implement fan and heat exchanger models in CHAD
 - Develop cooling system model in CHAD
 - Develop and implement robust numerical methods for CHAD
 - Develop virtual reality techniques
- Oak Ridge National Laboratory
 - Develop and implement radiation heat transfer capability in CHAD
- ADAPCO
 - Identify test problems and develop computational mesh
 - Implement models and advanced methods in commercial version of CHAD
 - Participate verification and validation of models in CHAD
- USCAR
 - Specify test problems
 - Participate in verification and validation of models in CHAD

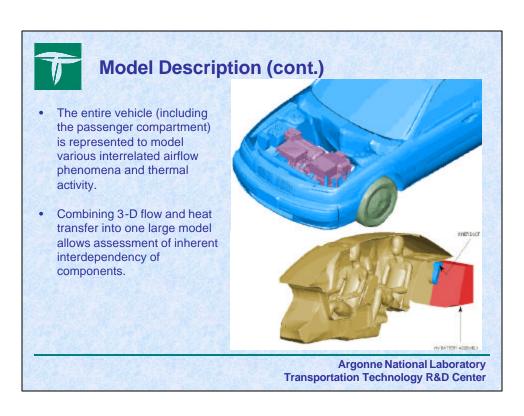
Argonne National Laboratory
Transportation Technology R&D Center

HEV Pilot Project

- Model description
 - External domain
 - Front end
 - Underhood components
 - Heat exchanger package
- Preliminary results
 - Flow field
 - Temperatures
- Conclusions

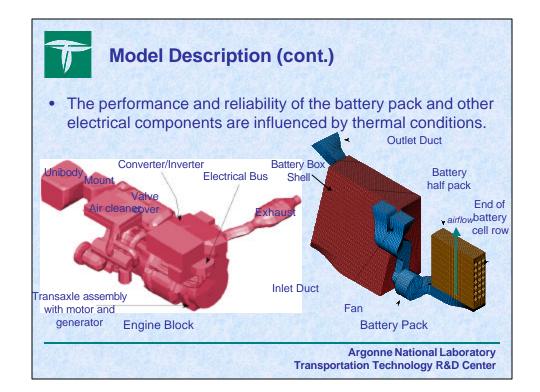
HEV Project Summary


- A pilot project for thermal analysis of an HEV was recently completed with the STAR-CD general-purpose CFD software
 - Mesh of a generic HEV
 - Focus on radiator thermal performance
- Characteristics of the model
 - 3.6 million fluid cells
 - radiator as dual-stream, single-phase heat exchanger
 - fans modeled with implicit multiple reference frames
- Solution performed on an IBM Power 3 SMP cluster
 - 8 processors, each with 512 Mb memory
 - 1400 iterations in 28 hours


Argonne National Laboratory
Transportation Technology R&D Center

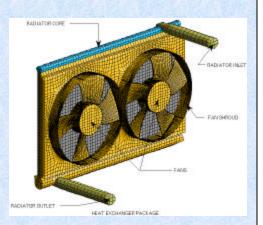
Thermal Issues in HEV Operation

- Simultaneous, sustained operation of motor and engine (hill climbing, passing)
- Low-speed operation with AC load
 - AC requires engine operation
 - cooling airflow is reduced at low speed
- Battery cooling
 - relationship to battery performance
 - connection with AC loading
- Critical components
 - inverter/Converter: Provide motor and generator logic and serves accessory loads
 - computers for engine, inverter, ABS, steering, battery management, navigation and dashboard (location driven by electrical noise avoidance as well as thermal issues)



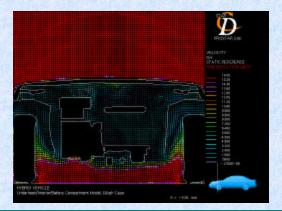
Model Description (cont.)

- Detailed geometric modeling of the front end of the vehicle is important because the openings play a critical role in the effectiveness of a powertrain cooling scheme.
 - They provide airflow to the front-end heat exchanger package (radiator and condenser).
 - This region is subject to frequent design changes.



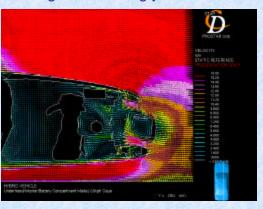
Model Description (cont.)

- The radiator is modeled as a dual-stream, single-phase heat exchanger.
- Pressure drops through the radiator core are accounted for by treating both fluid streams as porous media.
- Heat transfer between fluid streams are user specified on the basis of available test data.
- Airflow due to spin of the fan blades is simulated in a rotating frame of reference (coupling of solutions in rotating and inertial frames is implicit).



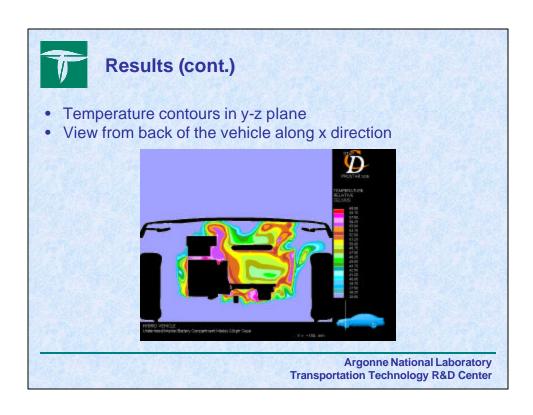
Argonne National Laboratory
Transportation Technology R&D Center

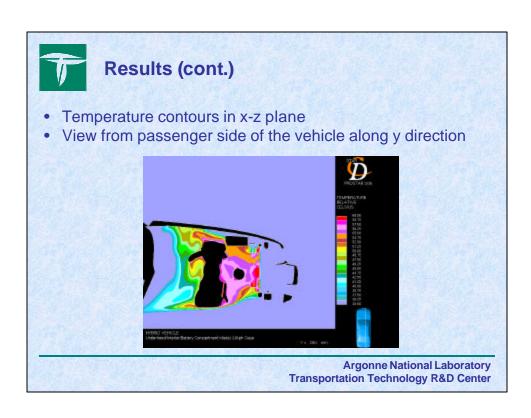
Results


- Velocity vectors in y-z plane with respect to moving vehicle
- View from back of the vehicle along x direction

Results (cont.)

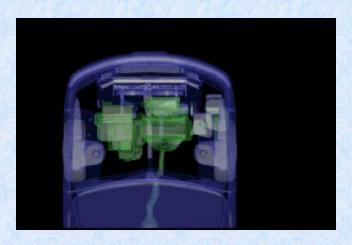
- Velocity vectors in x-z plane with respect to moving vehicle
- View from passenger side along y direction


Argonne National Laboratory
Transportation Technology R&D Center



Results (cont.)

- Velocity vectors in x-y plane with respect to moving vehicle
- View from top of the vehicle along the z direction



Results: Particle Tracks

Argonne National Laboratory
Transportation Technology R&D Center

Conclusions

- The pilot project for underhood thermal management of a generic HEV highlights modeling capabilities with STAR.
- The 3-D fluid flow and heat-transfer calculations for the entire vehicle provide a virtual test facility for
 - assessing the interdependence of underhood components
 - studying load conditions
 - identifying critical components
- Analytical CFD capabilities complement experimental programs in the design of next-generation advanced vehicles:
 - battery temperature optimization
 - radiator configuration
 - integrity and reliability of components (temperature limits and thermal cycling)
 - AC interaction with battery cooling and engine exhaust